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We study an optical space-division multiplexed system where the number of modes that are addressed by the
transmitter and receiver is allowed to be smaller than the total number of optical modes supported by the
fiber. This situation will be of relevance if fibers supporting more modes than can be processed with current
MIMO technology are deployed with the purpose of future-proof installation. We calculate the ergodic capacity
and the outage probability of the link and study their dependence on the number of addressed modes at the
transmitter and receiver. c© 2012 Optical Society of America
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One of the most intensely explored approaches for
dealing with the imminent capacity crunch of optical
communications systems [1] is the implementation of
space division multiplexing (SDM) in multi-mode op-
tical fibers [2]- [5]. With this approach, information is
transmitted simultaneously over multiple spatial modes
of the optical fiber, while relying on multiple-input and
multiple-output (MIMO) signal processing algorithms to
resolve issues related to mode coupling in the process
of propagation. With today’s technology, the number of
fiber modes that can be effectively supported for the
transmission of information is limited almost exclusively
by the complexity of the MIMO algorithms and by the
speed of signal-processing hardware. As these technolo-
gies continuously improve with time, one may consider
deploying multi-mode fibers admitting a larger number
of spatial modes than can be processed today, with the
intention of harvesting the full capacity of the fiber in the
future. Such a solution, initially proposed and considered
by Winzer and Foschini in [3], does not come without a
price. Part of the transmitted signal energy couples into
fiber modes that are not detected at the receiver, thereby
resulting in the reduction of achievable capacity. In what
follows, we refer to the multi-mode fiber-optic channel in
which not all supported modes are coupled to transmit-
ters or receivers, as the under-addressed MIMO channel.
Analysis of its performance is the prime goal of this work.

We consider a system using a total of m scalar modes
(counting both spatial modes and polarizations) and
where the number of modes addressed by the transmit-
ter and receiver are mt and mr, respectively. We explore
two distinct regimes of operation, referred to as the er-
godic and the non-ergodic regimes [6]. In the ergodic
regime, a single frame of the error-correcting code sam-
ples the entire channel statistics, whereas in the non-
ergodic regime, the channel within each code-frame is
assumed to be constant. In the fiber-optic scenario, the
ergodic regime is relevant in particular when the chan-
nel correlation bandwidth is very small relative to the

bandwidth of the signal, as a result of large modal dis-
persion [4]. It may also become relevant if schemes ac-
tively randomizing fiber mode-coupling on a time-scale
much shorter than the the error-correcting code-frame
are introduced. In the ergodic regime, performance is
evaluated in terms of the ergodic capacity, which is the
channel capacity averaged with respect to all channel
realizations. In the non-ergodic regime, performance is
characterized in terms of the system outage probability.
We derive these quantities analytically and present their
dependence on m, mt and mr. A particularly interest-
ing outcome of our study is that when mt + mr > m,
a throughput equivalent to mt + mr − m decoupled
single-mode channels can be guaranteed. In the fast-
changing channel regime this implies that the ergodic
capacity is never smaller than (mt + mr − m) single-
input single-output (SISO) channels, whereas in the non-
ergodic regime a throughput equivalent to (mt+mr−m)
SISO channels can be achieved with zero outage proba-
bility.

In the absence of sufficient experimental characteriza-
tion, we adopt the description of the multi-mode fiber
as a unitary system with strong mode-coupling, as was
used in most previous studies [3]- [5] of the multi-mode
transmission problem. By doing so, we ignore the effects
of mode-dependent losses and justify the description of
the overall m×m transfer matrix H as a random instan-
tiation drawn uniformly from the ensemble of all m×m
unitary matrices (Haar distributed). In addition, as was
done in [3], we assume that the average power generated
by each of the mt transmitters is constant, regardless of
the value of mt. Under these conditions the channel can
be described as

y = ρH11x + z , (1)

where the vector x containing mt complex components,
represents the transmitted signal, the vector y contain-
ing mr complex components, represents the received sig-
nal, and z accounts for the presence of additive Gaussian
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Fig. 1. The ergodic capacity normalized by C(1, 1, 1; ρ) =
log(1 + ρ2) vs. ρ2 for various combinations of mt ×mr

with m = 6.

noise. The mr components of z are statistically indepen-
dent, circularly symmetric complex zero-mean Gaussian
variables of unit energy E(|zj |2) = 1, and the compo-
nents of x are constrained such that the average energy
of each component is equal to 1 E(|xj |2) = 1. The term ρ
is proportional to the optical power per excited mode so
that ρ2 is equal to the signal-to-noise ratio (SNR) in the
single mode (m = 1) case. The matrix H11 is a block of
size mr ×mt within the m×m random unitary matrix
H

H =

[
H11 H12

H21 H22

]
.

As a first stage in our analysis we establish the re-
lation between the transfer matrix H11 and the Ja-
cobi ensemble of random matrices [7, 8]. The Jacobi en-
semble with (integer) parameters k1, k2, n (satisfying
k1, k2 ≥ n) is denoted J (k1, k2, n) and can be con-

structed asG†1G1(G†1G1+G†2G2)−1, whereG1 andG2 are
statistically independent k1×n and k2×n random Gaus-
sian matrices, respectively. By the term Gaussian matrix
we are referring to a matrix whose entries are zero-mean
complex Gaussian variables with unit-variance. The joint
probability density function (PDF) of the eigenvalues of
this ensemble is given in [7].

It is known [9] that for mt, mr satisfying the condi-
tion mt +mr ≤ m, the squared non-zero singular values
of H11 have the same distribution as the eigenvalues of
the Jacobi ensemble J (mmax,m − mmax,mmin), where
mmin = min{mt,mr} and mmax = max{mt,mr}. For
mt + mr > m it can be shown [11] that mt + mr − m
singular values of H11 are equal to unity with prob-
ability 1, whereas the remaining m − mmax non-zero
singular values of H11 are equal to the non-zero sin-
gular values of H22, and hence follow the distribution
of the Jacobi ensemble J (m −mmin,mmin,m −mmax).
The latter property can be seen by noting that the uni-
tarity of H implies that H†11H11 + H†21H21 = Imt and

H21H
†
21 + H22H

†
22 = Im−mr

.
Since the noise is additive circularly symmetric Gaus-

sian, the capacity for a given channel realization is known

[6] and given by log
[

det(Imt
+ρ2H†11H11)

]
. The ergodic

capacity is obtained by averaging this expression over all
channel realizations H11. It can be expressed in the form

C(mt,mr,m; ρ) = E[

mmin∑
i=1

log(1 + ρ2λi)] . (2)

where the expectation is over λ1, . . . , λmmin
, the squared

nonzero singular values of H11. In the case mt+mr ≤ m,
using the the joint PDF of λj one finds that the ergodic
capacity satisfies [11]

C(mt,mr,m; ρ) =

∫ 1

0

log(1 + λρ2)×

× λα(1− λ)β
mmin−1∑
k=0

b−1k,α,β [P
(α,β)
k (1− 2λ)]2dλ , (3)

where P
(α,β)
k (x) are the Jacobi polynomials (see [10,

8.96]), α = |mr −mt|, β = m −mt −mr, and the coef-
ficients bk,α,β are given by

bk,α,β =
1

2k + α+ β + 1

(
2k + α+ β

k

)(
2k + α+ β

k + α

)−1
.

Note that the above result, as well as all results in what
follows are symmetric with respect to mt and mr, which
is a consequence of our choice to maintain the power per
transmitter constant in all cases.

To obtain the ergodic capacity in the case where mt+
mr > m, we use the distribution of the singular values
in that case, turning Eq. (2) into

C(mt,mr,m; ρ) = (mt+mr −m)C(1, 1, 1; ρ)+

+ C(m−mr,m−mt,m; ρ) , (4)

where C(1, 1, 1; ρ) = log(1 + ρ2) and where
C(m−mr,m−mt,m; ρ) is given by Eq. (3). Note
that the second term on the right-hand-side of (4)
reduces to 0 when mt, or mr is equal to m. The form of
Eq. (4) follows from the fact that mt + mr −m of the
singular values are equal to unity, while the remaining
singular values correspond to the Jacobi ensemble,
as discussed earlier. In Fig. 1 we show an example
where the ergodic capacity of the channel is plotted
as a function of ρ2 for the case of m = 6. The ergodic
capacity in the figure was normalized to log(1 + ρ2)
(which is also the capacity in the single-mode case).

We now turn to the analysis of the non-ergodic case,
in which the channel realization is assumed to be con-
stant within each given code-frame. Traditional optical
communications systems, which are implemented over
single-mode optical fibers (m = 2), usually operate in
this regime. As discussed earlier, the figure of merit in
this regime is the outage probability Pout, defined as the
probability that the capacity induced by the channel re-
alization is lower than the rate R at which the link is
chosen to operate. Note that we assume that the chan-
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Fig. 2. Outage probability versus the normalized rate r.
The number of supported modes is m = 6 and ρ2 =
20dB.

nel instantiation is unknown to the transmitter, thus it
can not adapt the transmission rate. The outage proba-
bility can be formally expressed as

P out(mt,mr,m;R) =

= Pr
[

log det(Imt
+ ρ2H†11H11) < R

]
. (5)

For mt +mr ≤ m Eq. (5) can be readily evaluated by
using once again the distribution of the eigenvalues of the
Jacobbi ensemble [7]. Defining a parameter r such that
the system transmission rate is given by R = r log(1 +
ρ2), we obtain

P out(mt,mr,m;R) = K−1mt,mr,m

∫
B

mmin∏
i=1

λ
|mr−mt|
i ×

× (1− λi)m−mr−mt

∏
i<j

(λi − λj)2dλ , (6)

where Kmt,mr,m is a normalization factor and where
B, the range of integration includes all ordered singu-
lar values of H11, 0 ≤ λ1 ≤ . . . ≤ λmmin

≤ 1, for which∏mmin

i=1 (1 + ρ2λi) < (1 + ρ2)r.
For the case of mt+mr > m, since mt+mr−m eigen-

values of H†11H11 are unity and the other m−mmax non-
zero eigenvalues are equal to the non-zeros eigenvalues
of H†22H22, it can be shown [11] that

P out(mt,mr,m; r log(1 + ρ2)) =

= Pout(m−mr,m−mt,m; r̃ log(1 + ρ2)) , (7)

where r̃ is the larger between r − (mt + mr − m) and
0, and where the right-hand-side drops to 0, when mr,
or mt equals m. Equation (7) implies that in the case
mt+mr > m the outage probability is identical to that of
a channel with m−mr modes addressed by the transmit-
ter and m−mt modes addressed by the receiver, which is
designed to support a transmission rate equivalent to r̃
single-mode channels. Note that when r < (mt+mr−m),
r̃ = 0, Pout = 0 implying that for such rates zero outage

probability is achievable. A practical scheme for achiev-
ing zero outage under these conditions is proposed and
discussed in [11]. In Fig. 2 we show an exemplary calcu-
lation of the outage probability as a function of the nor-
malized rate r. These curves, obtained from our analysis
were plotted in the same form as the numerical results
reported in [3], except that here we assumed a fiber sup-
porting m = 6 scalar modes. Note how the outage prob-
ability abruptly drops to 0 whenever r becomes smaller
than mt +mr −m.

To conclude, we have studied the under-addressed op-
tical MIMO channel, where the number of fiber modes
addressed by the transmitter and receiver is allowed to
be smaller than the overall number of modes existing
in the fiber. This scenario was motivated by the idea
of installing fibers that admit more modes that can be
MIMO processed with currently available technology, in
order to achieve future-proof operation [3]. While the
price of not detecting all modes is notable, certain trade-
offs exist and can be used to one’s advantage. Most im-
portantly, we have shown that a performance equivalent
of mt +mr −m uncoupled single-mode channels can be
achieved in all cases.
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